PHYSICAL REVIEW D, VOLUME 61, 114501

Lattice model in three dimensions with a@ term
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We study a three-dimensional Abelian lattice model in which the analogue of a theta term can be defined.
This term is defined by introducing a neutral scalar field, and its effect is to couple magnetic monopoles to the
scalar field and vortices to the gauge field. An interesting feature of this model is the presence of an exact
duality symmetry that acts on a three-parameter space. It is shown that this model has an interesting phase
structure at nonzero values 6f In addition to the usual confinement and vortex phases there are phases in
which loops with composite charges condense. The presence of novel pointlike excitations also alters the
physical properties of the system.

PACS numbd(s): 11.15.Ha, 12,38.Gc

[. INTRODUCTION Unlike in the non-Abelian theory, this term does not have
topological significance as the winding number of any map-
Topology has played an important role in statistical me-ping. However, this term can have a nontrivial physical ef-
chanics and field theory. The topology of the dynamical vari-fect in the presence of magnetic monopoles. The effect of the
ables leads to novel excitations that can have a profound term in Eq.(2) was studied on the lattice ifv]. It was
effect in determining the physical properties of the system. Ashown that the&f term drastically alters the phase structure of
well-known example in statistical mechanics is the vortexthe theory and a rich phase structure was uncovered as a
excitation[1] in the two-dimensional planar model. These function of . The oblique confinement phases conjectured in
vortex excitations, which exist because of the angular naturg6] were also elucidated. An exact duality symmeetmhich
of the spin variables, drive a phase transition which is venyis the action of the group $R,2)] was demonstrated to hold
different from other phase transitions in statistical mechanin this model[8], and the action of this symmetry was used
ics. In gauge theories, the analogue of the vortex excitation it predict the entire phase structure of the model. Bothgthe
the magnetic monopolg2]. The magnetic monopole exists terms discussed so far require four Euclidean dimensions. In
as a consequence of the topology of the gauge group. Mu[7,8] some two-dimensional spin models were also consid-
timonopole states are also present as collective excitationsred in which af term could be defined. We would like to
These multimonopole excitations can form a plasma phase ioconsider such a term in three Euclidean dimensions and
which electric charges are confined. A classic example o$tudy its effects. An inspection of the properties of the
this phenomenon is compact QED in three Euclidean dimentensor shows that defining gauge invariant terms using only
sions[3]. Apart from the intrinsic topology of the dynamical pure gauge fields is not possible. An exception is the Cherns-
variables, we can also consider terms which have a dire@imons term, which can be defined using only éterm and
topological significance. One such term is the well-knofvn  gauge field49]. Lattice models for the Chern-Simons term
term in non-Abelian gauge theories. For the (3Unon-  have been considered ji0]. The ¢ term that we will con-
Abelian gauge theory, this term is defined as sider in three dimensions is the lattice analogue of the fol-
lowing term:

d*xtrF ,F .. 1)
f r r |0f d3X€M,,)\FM,,o7>\¢). (3)

Although this term is a total derivative, it can have a non-

trivial effect whenever long range fields are present. In thét is clear that, under the parity transformation in three di-

space of finite action configurations, the above term is pre[nensmns,

cisely the winding number of mappings fro®; to Ss.

Gauge field configurations which give a nonzero value to the =%
expression in Eq(1) can affect some of the physical prop- y—y
erties of the systenf¥]. An important effect of the term in ’
Eqg. (1) is that it can convert a magnetic monopole into a t—t,

particle with an additional electric charge—a dy[&ih. It was

conjectured in[6] that non-Abelian gauge theories could the ¢ term changes sign, i.ef— — 6. Therefore, the term
have new phases of oblique confinement as a result of th@iolates parity unless the free energy is an even function of
interactions between these dyons. The analogue of the terg The field ¢ is a neutral field and hence the above term is

in Eq. (1) in an Abelian gauge theory is gauge invariant. A simple integration by parts gives the fol-
lowing terms:
p =
J e @ LewnF () 601~ [€,nF (0] B(X). @
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The dual of the field strength is defined as the U1) lattice gauge theory11]. Recently, in[12], dual
transformations have also been constructed for non-Abelian
(5 lattice gauge theories.
The main aim of this paper is to present an analysis of the

The second term is seen to bé,E, (x) #(x) and this term ¢ t€rm in a lattice model containing both monopoles and
can be nonzero in the presence of magnetic monopoles. YPrtex lines. Thed term is introduced on the lattice by cou-

ﬁ)\(X) = % 6)\/,LVF,LLV .

the presence of magnetic monopoles, pling the monopoles to the scalar field and the vortex lines to
the gauge field. Many of the techniques used for studying the
T _= lattice model are well known in the literature but we present

HFy=m(x), (6)

many details for the sake of completeness. Also, at some
places we have managed to give more illuminating deriva-
tions of some of the steps in the analysis. The organization of
this paper is as follows. In Secs. | and Il we discuss lattice
models which have monopoles and vortices as possible ex-
citations. In Sec. Il we present a detailed analysis of the
model obtained by adding é term. In Sec. IV we make
some concluding remarks. Some technical details are pre-
sented in the Appendix.

wherem(x) is the magnetic monopole density»atThe sec-
ond term leads to the coupling

26im(x) (). 7)
Another nontrivial contribution to Eq3) can come from a

vortex line. This is seen by doing the integration by parts in
Eq. (3) differently as

26,00, (A, 0\ D) —2€,,)A,0,0\b. (8) IIl. LATTICE MODEL WITH MONOPOLES
The second term can be written as tior-1r'he model considered here is given by the following ac-
—Zﬁif mM(X)A,u(X). 9 Sl:—Tﬁng [aud)v_avgbﬂ_zﬂ.sﬂv(x)]Z
mv
The quantity
+ip 2 ML (X) b, (X). (11)
mp,(x)z 6#)\,,(9)\(7,,(]5 (10) X

is nonzero around a vortex line. Hence, the term in@gis | "€ Partition function is given by

nonzero in the presence of magnetic monopoles and vortex Z,=trexp(S,) (12)
lines, and introduces new couplings between the topological ! v

[m,(xx) and m(xx)] and the spin-wave&, and ¢) de- The symbol “tr” denotes

grees of freedom. In the absence of these topological excita- " "
tions, the term in Eq(3) will have no physical effect. An- *

other way of motivating the term in Eq(3) is by Z Z,m wadqs#' (13
dimensionally reducing the four-dimensionélterm in Eq.

(2). At high temperatures, the leading order contributionThe variables¢, and m, are defined on the links of the
from a term like Eq(2) is given by Eq(3). In this paper, we lattice and the integer-valued variabkes, are defined on the
will present an analysis of th@ term in three Euclidean plaquettes of the lattice. The symbal denotes a three-
dimensions. In three dimensions, the physical properties afimensional vector and the symba) is the lattice deriva-
this model are quite different from the four-dimensional one tive. The fields¢,, are the gauge degrees of freedom whereas
We will show that many of the interesting features pointedthe integer valued variables,, are the monopole degrees of
out in [7,8] are also present in three dimensions. Howeverfreedom. The above model describes gauge fields coupled
there are also significant differences. As already explaine¢hinimally to current loops with the additional presence of
before, thed term becomes important whenever there aremagnetic monopoles. This model has the following gauge
magnetic monopoles or vortex lines. On the lattice we cannvariance:

naturally define models which contain monopoles and vortex

lines as possible excitations. This is possible if the degrees of $u(X)— b+, A (14
freedom are considered as angular variables. We first prese%_ .

two well-known lattice models which have monopoles and is also requires that
vortex excitations, and then we study the effect of the

parameter in these models. We will see that ¢hgarameter

couples these two models in a nontrivial way and leads to gjence, the summation over,, is restricted to a summation

rich phase structure. The analysis presented here is based @fer closed loops. To see that this model describes magnetic
the technique of duality transformations as applied to statismonopoles, consider the quantity

tical systems. These techniques have been used very effec-
tively to understand systems like the planar moddland Fu(X)=3d,¢,(X)=3d,¢,(X)=27S,,(X). (16)

d,m,=0. (15
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> (20)

m'u ,m=—o0,00

yt. . o o | | - |
H _i _{ _{ _ with the understanding that the summation is over configu-
L T . rations with zero total monopole number and closed loops of
currents. The quantitg(;,, is a particular solution of

Lo d,K},=pm,. (21)
z —
FIG. 1. The string attached to the dual excitations runs on theIn t,he. above expressmn for the p'artltlon_ functll(ﬁ,(x .
dual lattice. —x") is the three-dimensional Green’s function which satis-

fies

Consider a configuration in whiclks,,(x)#0 on all the _ 2 ) — oy

plaquettes pierced by the string in Fﬂig. 1. This figure shows IG(x=x1) = 8x=x"). (22
the projection of the string on theY plane(as dashed lings
and the projection of the plaquettéshich are in theY Z
plane on theXY plane(as solid lines The string is on the
dual lattice and begins & and extends to infinity in the
direction. It is easily seen that, in this configuration,

The symbol#? is the lattice Laplacian. The partition function
in Eq. (18) describes a gas of current loopsy,(x)] and

magnetic monopolepm(*x)]. The monopoles and current

loops interact among themselves with a three-dimensional

Coulomb interaction. The last term in E@.8) describes the

~ interaction of a monopole with a current loop. This interac-

I\NFr=—2m6(Xp), A7 tonis just the solid angle subtended by the current loop at

) ) ) ) the monopole and this is shown in the appendix. Before pro-

this means that there is a magnetic monopolé®atith a  ceeding we briefly outline the steps leading to Eif). The

Dirac string in thez direction. Thus, the integer-valued |inearization of the action is accomplished by introducing an

plaquette degrees of freedom account for magnetic monoyyxiliary field K ,, and the partition function becomes
poles. The monopole and its associated Dirac string reside on

the dual lattice. The monopoles in this model can be made [«

explicit by means of a duality transformation. A duality dK,trexp i > K,,(x)
transformation generally involves three steps. First, the qua-~ xwy

dratic part of the action is linearized by introducing an aux- -1
iliary field. The next step is to integrate over the origifial XEXP(E > K,ZW(X)) exr( ip> M, (X),(x) .
this cases,) degrees of freedom and this will lead to a g X Xuy

constraint for¢, . This constraint is solved by introducing (23
degrees of freedom which are the dual variables and this

solution is inserted back into the partition function. A few Integration overg,, results in the constraint
manipulations after that lead to the following form of the

[aud)v_ avd),u_ ZWSMV(X)]

partition function: 20,K,,=pm,. (24
_ _ The solution of this constraint is
leTrexp( —8m2B,>, m(x)G(x—x’)m(x’))
xx’ 2K, = €,ndrd+ K. (25
_n2
Xexp(_p 2 M, (X)G(x—X")m,(x") Since X ,, has to be an integer, the fieldgx) and K;V(x)
8By x are integer valued. However, the solution to the constraint is

not unique because
xex;{Zwiz ﬁ'I(X)G(X—X,)EMV)\&)\K;V» (19

x,x

d(X)—p(X)+C (26)

also solves the constraint. Using this “dual” gauge invari-

ance, the range of integration over can be taken from

1 —oo to . Substituting the solution of the constraint in Eq.

M(*X) = = € uhSuu(X). (199 (29 in Eq.(23) and then doing a Gaussian integration over
2 ¢ leads to Eq(18).

The monopole densityn(xx) is defined as

The symbolxx denotes that the monopole is defined on the
dual lattice point. This definition requires that the total
monopole number in the system be zero. The symbol “Tr” A lattice model describing vortices is defined by the ac-
denotes tion

lIl. LATTICE MODEL WITH VORTICES
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2
Sz=—%2 [(7#0(X)—277|#(X)]2+ip2 m(r)é(r). Zz=Trexp(—% m(x)G(x—x’)m(x’))
Xt r h xx’
(27

><exp( —2772/8h2’ ﬁM(X)G(x—x’)ﬁ"lM(x’))

The partition function is given by

Zg=tl‘eX[.'(Sz). (28) XeXF{ _27T|2 a)\(X)G(X_X,)ﬁ)\MyaﬂK:).
X,x'
The symbol “tr” denotes 39
The “Tr” denotes
o Lod”' @9 > (35
T m,m=—w

In the above model the variablésandm are defined on the 1 he vorticitym,(xx) is defined as

sites of the lattice and the variableg are defined on the M ()= €08, B0 (%) (36)
links of the lattice.6’s are the spin-wave degrees of freedom u pVNCV AT
and n,’s are the vortex degrees of freedom. The aboverigm the above equation it is clear that the vortices form
model describes vortex lines interacting with charge(k) closed loops because
variables. The model has the following global invariance:
d,m,(*x)=0. (37
0(x)— 6(x) +c, (30 As in the case of the monopole, the vortex lines and their
associated strings reside on the dual lattice. A closed vortex
wherec is any constant. This automatically requires loop in thew v plane will have a sheet swept by its string and
the plaquettes in this sheet will be dual to the links with
#0. The steps leading to the dual transformation are analo-
Z m(x)=0. (31) gous to those in the previous section; only the auxiliary field
X K, is now introduced on every link. The constraint equation
that has to be solved is

The vortex lines in this model can be identified by consider- 9,K,(x)=pm(x). (39
ing the quantity
The solution of this constraint equation is

Viu(X) =9, 0(x) =2 ,(x). (32 K ()= €, 0, b+ KL(X), (39)

Consider a configuration in which, is nonzero on all the with K7,(x) being a solution of the inhomogeneous equation.
links pierced by the world line of the string. This configura- 1"€ dual gauge invariance in this case is

tion is also shown in Fig. 1. This configuration is a vortex ~ ~

running in thez direction which is the direction out of the B(X)= d(X) + hA. (40
plane of the figure. The accompanying string is chosen in th ' . . .

X direction and is indicated by the dashed line which piercej-h'.a first two terms in Eq(_34) describe the Coulomb inter-
the bonds between pairs of nearest neighbor &ifleswn as action betweenm(x) variables and the vortex currents

solid lineg. Any closed loop about this vortex line will give Mu(*¥X). [G(x—Xx") is the same Green’s function as in Eq.
a nonzero value for (22)]. The last term represents an interaction between the

vortex currents and thm chargesK;(x) is the solution of
the inhomogeneous equation

; V,(X). (33 9,K%(x)=pm(x). (41)

This interaction is again proportional to the solid an@part
The vortices in this model can again be made explicit byfrom a negative signof the vortex current subtendedrat A
means of a dual transformation. Introducing an auxiliarydemonstration of this can be found in the Appendix.
field as was done in the previous section and repeating the Before we proceed to the model withéaterm, we can
procedure described before, we get an expression for thalready see that the two models described above have a very
partition function: similar structure. For instance, the monopole model has

114501-4
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When =0, the two models are decoupled and the partition
function is simply a product of their separate partition func-
tions:

d,m,=0 (42
as the current conservation equation and

S M(*x)=0 43) £=4ale. &)

x*

The model atd=0 represents a system of monopoles, cur-
as the monopole conservation equation. In the vortex model€nts,m charges, and vortices. However, the excitations in
the m charge conservation equation is one system do not interact with those in the other system.
The model atd=0 can be shown to be trivially self-dual.
This follows by noting that the transformations

> m(x)=0, (44)
X 2
p
and the vortex conservation equation is 167284,
d,m, (*X). (45) p2
. . Bn— ,
The roles of the conservation of ordinary charges and topo- " 167r2,6'g
logical charges are clearly reversed and the two models are
dual to each other. This duality will be made more precise in m(x) — m(*X)
the next section. '
M,,(X)—M,,(%X) (52)

IV. COUPLED MODEL

Now we can couple the two previous models by introduc-Simply interchanges, the two expressions in 8&) and Eq.

ing a # term as explained in the introduction. THeerm is
defined by introducing two additional couplings as

ipl <« ~ ipl — ~
Si= g 22 ME0000F 7 21 M, (xX) ().
(46)
The action of the coupled model is given by
S: Sl+ Sz+ S‘g, (47)

and can be written out as

S= __:8g 2 [aMQSV_&Vd)#_ZWSI“"(X)]Z

2 Xuv

- % 2 [9,000 =2, 00T +ip 2 M, (0 ¢,(r)

+ipD m(x)&(x)+¥ > M(*x) $(X)
X X,

+ %9 ;L M, (*X) b ,(X). (48
The partition function of this model is given by
Z=trexp —9). (49
The trace represents the sum over states:
> >

m( - m, ()

f:d‘ﬁu(x) f:db’(x). (50)

(34). Note that this holds before the sum over states is per-
formed in Eq.(18) and Eq.(34). The dual transformation
maps every point on the hyperbola,

2

p

1672 53
T

,Bgﬁh:

onto itself. The region3yB,< 1/167? is mapped onto the
region ByB,> 1/167% and vice versa. However, this self-
duality property is trivial because the system on which it acts
is a product of two decoupled systems. Nonetheless, we
mention this here because, as we will show later, at certain
values of6 the self-duality will still persist. Whe@+ 0, the

two systems are coupled in a nontrivial way. There is a cross
coupling between the spin-wave excitaions of one system
and the topological excitations of the other system. For in-

stance, the monopoie(*x) couples to the spin-wave field
m(x) and similarly the vortexm,(x) couples to the gauge
field ¢, . The main point of this paper is that this coupled
system defines an interesting model that has some exact du-
ality symmetries. It also has a rich phase structure as a func-
tion of 6. The analysis previously described for the mono-
pole and vortex models can be repeated in the same way as
before. The only point to note is that the monopoles and
vortices are defined on the dual lattice whereas the gauge
fields and the spin variables are defined on the original lat-
tice. However, we can approximately take the point on the
dual lattice to coincide with the point on the original lattice.
There will be corrections to this approximation but these will
involve higher derivative terms which can only affect the
short wavelength behavior of the system. Tldeterm
changes the constraint equation for the two auxiliary fields.
The new constraint equations become

114501-5
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p0 po.
d,K,,=pm,+ 5— o m,(*X), (54) a#KW pm,+ zm#(*x),
po~ . po-
K, (xX)=pm(x) + Em(*x). aMK#(x)zpm(x)JrEm(*x). (55)

The only change is in the inhomogeneous part of thes®epeating the steps performed for the monopole or the vor-
equationg, tex model leads to @ dependent partition function given by

v~ g 3 [ mi0 50 o0 mox e 7o
Zy=trex _8_,89, 2 m#(X)JerM(X) G(x=x")| m,(x HEm"(X )

p? ( 0 -~
exg — Z_,Bh 2 m(x) + Em(x)

exp( —8m2B,>, Fn(x)G(x—x’)r”n(x’))exp( —272Bn >, Fnﬂ(x)G(x—x')aM(x')>

xx’ xx’

xG(x—x’)( m(x')+ ir”n(x’))
2

xexp(ZwiE ﬁ(x)G(x—x’)eMMaxK;V)exp(—ZWiE an(x)G(x—x’)ewyaMK:). (56)

x,x’

It can be seen that thé term couples the gauge and spin venient to associate a vorticity and an electric charge to ev-

models and introduces additional interactions in each oery closed loop. The values of these charges are plotted in

them. The partition function of the model is no longer sepa+ig. 2. The first thing to notice about this model is that the

rable into a spin part and a gauge part and cannot be writtepartition function is periodic ing. This follows from the

as simple fact that we can always shift the summed variables

m,, andm, as their summation range is infinite. In the pres-

LyF21Z;5. (57)  ence of ag term the model is no longer self-dual under the

transformations in Eq(52). However, for certain specific

Hence, the phase structure of this model can be quite com values of# the model is still self-dual. These are the values

plicated. One of the 'm”?ed'ate consequences of9_ttmrm IS" " for which 27/ 6 is some integeq. To see the self-duality for
that the term representing the Coulomb interaction betwee{hese values of, we make a simple change of variables:
electric loops gets modified. This means that the vortex loops ' '

[for which ﬁ#(*x);éO] acquire an electric charge which is

given by m+ —=—2
g q’
Qu(X)=m (X)+ m,(*X). (58 - T
m
. . . m+—=——. (60)
For instance, a loop having only vorticitym,,(x)=0, q q

ﬂ(*x);&O] will still have an electric charge given by

(0/277)m (xX). Likewise, the Coulomb interaction between EXpressing the partition function in terms of, m,, T, and
m charges is also modified and acquires a piece due to the

monopoles,
0 O T R T R B
Q(x)=m(x)+ﬁr~n(*x). (59 .e. 0. ® C o. 0.0
v
Similarly, a point having only non-zero monopole density mle o » o ; L
will have an additionain charge ¢/2)m(xx). The electric e.0.9.0. 8. 0
charges of the vortex loops and thecharges of the mono-
poles can now take fractional values becausé.df is con- ® 2 0 0 0 » 9
q—

ISince there are many fields involved, our notation might be con-
fusing. See the end of the Appendix for clarification. FIG. 2. Charge lattice af= .
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m, the partition function reduces to the the original one pro-

vided we identifyT, with m,, T with m, and make the

following changes:

JTR)

2

p
Po™ Tentatgy’

2

PHYSICAL REVIEW D61 114501

22 2
6
2m Bt = Zp—,,
3272, 8,
p2 p20/2
—= +2728!.
8By 3212, P

We get four equations in the three variabjgs, B, and 6.

By p Interestingly, these four equations are consistent and have
h 1672024, the solution

Unlike the dual transformations in E¢62), the above dual ;L 47*Bpp?
transformations contain more information because they now Ph= 647 B, B+ 26>’

. . gPPh p
act on a system which is not a decoupled system. These dual
transformations can be used to understand the phase diagram 472 B, p?

9

of the model in one region if the phase diagram is known in ’
another region. The points of the phase diagram which are

Po™ S oot 207

left invariant under the dual transformation are the points on

the hyperbola:

p2
Bobr="""7

. 61
167%q> (61

The self-duality in Eg.(61) holds true only when#

B 16746%p*
(647 ByBn+p26%)2

6'? (66)

This means that we can define an exact duality symmetry in
the model which now acts on a three coupling space. The
duality equations can be recast in a more concise form by

=2m/q, q being an integer. We now point out another sym-defining the variable

metry that is present in the model for arbitrary valuesof

This symmetry can be deduced by requiring the partition

function to be invariant under the transformations

m——m,

mﬂ—>—mﬂ,

Bg_)ﬁév
Bn—Bh»
6—6'. (62)

As the partition function is a trace over tme,m,m,,m,
degrees of freedom, it can be written as

Z=Z,(m,mm,,m,). (63)
Imposing the condition

Zy(—m,—m,m,,m,)=Z,(m,m,m,,m,), (64
we get the following set of equations:

P26 p

8728y 2B

2
8772,89+

(65

2 20/
[ 2 ’+
25, 8By

8726,

2=\(ByBn). (67)

In terms of the variableg and 6, the duality equations are

5 16m*p*z?
7=,
(64722 + p?6?)?
167*p*6?

o= ——— .
(647%2°+ p26%)?

(68)

If we define the complex coupling by

_4772 7]

b 2m

(69

the duality transformation can be expressed as

¢ 1
— .
{
Since the action is also periodic it with period 2, the
transformation

(70)

is also a symmetry of the model. These two transformations
do not commute with each other and generate the group
SL(2.Z2). This symmetry group was first pointed out[ B in

the four-dimensional model. In the three-dimensional model
that we are considering here, the duality symmetry has a
slightly. more complicated form as in E6) and the group
SL(2Z) acts on the variable which is given by Eq(67).
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We now proceed to study the phase structure of thidVe first consider the phase diagrampat0. When#=0 the
model. The phase structure of this model will be a functionpartition function can be decoupled into two partition func-
of the three parametefs,, B, andé at a given value op.  tions
The various phases of the model will be characterized by the
behavior of them(x),m(x),m,(x),m,(x) excitations. De- Z2=21Z,, (75
pending on the density of these excitations, the phases in this
model will have different physical properties. In order to and each of these systems can be considered individually. If
arrive at the phase structure of the model, we will use simpleve considerZ; first, the free energy of a loop of length
free energy arguments based on the energy and the entropsrrying electric chargen,, is given by
of loops. Though these arguments are admittedly crude and
ought to be substantiated by other methods, they do provide 2m2p?
us with a qualitative picture of the phase structure. We first F(L)= 3 m*G(0)L — (loge)L. (76)
note that there will be regions in parameter space where the 9
loops will condense. There are two kinds of loops that Canl’hus,F(L)<0 it

condense. They are labeled ly,(r) and r~nﬂ(r); m,,(r)
loops are the world lines of electrically charged particles, and 272p2G(0)

an#(r) loops are the vortex excitations. A loop having both By>
m,,(r) andﬁ1M(r) is also possible and it will be referred to as
a composite loop. These composite loops are formed by th?herefore, the model described K8, will exist in two

those ops there are also e pointike excitaiions abeled H125CS: & STally Phase in which the current oops are very
P P parse and a larg8y phase in which the current loops are

m(x) andm(x). m(x) are the magnetic monopoles amdx)  yery dense. The other excitations in this model, the magnetic
will be referred to as spin charges. The reason for this termgnopoles, will have a density given by

minology is that them(x) represent source terms for the spin
variables. In addition to these excitations there are also ex-
citations which simultaneously carry magnetic charge and a
spin charge. These will be referred to as composite charges. _ )
The composite charges are formed by the binding of a mad- nI|k_e the den3|t-y of current loops, the magr_wetlc monopole
netic monopole to a spin charge. A composite loop or a_depsny falls continuously to zero as the coupll_ng consgnt
composite charge is a combination of an ordinary charge anf§ Increased. We can make a similar analysis of the model
a dual excitation. If we neglect the long range Coulomb in-£2- The same free energy arguments applied to the vortex
teraction, a crude estimate for the free energy of a loop ofo0PS giveF(L)<0 if

lengthL having chargesr, ,r~nﬂ) is

(77

logc

p(Bg)= exp —8mByG(0)M*(x)]. (78)

log(c)
27%p? ~\2 - N o (79
F(L)= m+ o—m +2w2Bh(m)2}G(O)L 2m°G(0)
By 2
—(loge)L. (72) The small B, phase has a high density of vortex loops

whereas the largg,, phase has a very low density of vortex

Condensation of loops having chargemﬂ(,ﬁl#) oceurs loops. The spin charges change continuously witlB,, as

whenever the loop free energy becomes negative. The con- ) )

stantc depends on the coordination number of the lattice and (Br) = ex;{ _ p7G(O)m ) (80)

is approximately 5 for a three-dimensional cubic lattice. In PLPh 20n '

the above approximation, only the self-energy of the loop

has been considered in the expression for the free energgor the coupled model, this analysis can be repeated but
Though this is quite a severe approximation, we expect it tahere are now three coupling constagilg, B, and 6. We

reproduce the general features of the phase diagram. As w@nsider the condensation condition given by Ezp) for
have already noted before, the effect of theerm is to give  various limiting values of3y and By,. If we fix 9=, the

an electric charge to the vortex lines as different excitations present in the system are those which
correspond to the black points in the charge lattice in Fig. 2.
q,=m, + iﬁ (73) The excitations corresponding to these black points are mul-

v 2 tiples of the following fundamental excitationgt) electric

current loops (1,0), which have a nonzero electric charge;
Similarly, the magnetic monopoles get an effective spin(2) vortex loops (0,1); which have a nonzero electric charge
charge because of Eq(73); (3) Composite loops (% 2); which
have exactly zero electric charge, again because of /3.
A similar charge lattice can be drawn for the pointlike

0~
=m+ -—m. i e ; o )
q=m m (74) following excitations in the model. The excitations of this

2
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charge lattice are multiples of the excitationd) spin It is clear that the condensate (1,0) always has the lowest
charges (1,0), which have only an charge;(2) magnetic free energy. Therefore, the electric current loops are always
monopoles (0,1), which have a nonzene@harge because of dense on this axis and there is no phase transition in this
Eq. (74). (3) Compositely charged pointlike objects {12),  limit. The other special case to be considered is the follow-
which have a zeran charge because of EG(4). ing.
We have to compare the free energies of these conden- (5) B,=p. In this limit the free energy condition be-

sates and then choose the one with the lowest free energgomes
First, we can explore various limits of the coupling space.

: . 2 2
are(lg:i\fgehn:t?y- The free energies of the possible condensates F(L)= :33_’8 n %Fn G(0) + 272BM2G(0) — log(c).

o? L (87)

F(L)/L= 8_,89G(0) m+5m| —log(c). (8)  The condensation criterion can be written as the interior of
the ellipse on the charge lattice
O ) o @ i
1): —log(c).
© Ay, (F ?) - o9

The above estimates show that the composite loops (1,
—2) will always have the lowest free energy. Therefore, inThe major and minor axes of the ellipse are given by
this limit, there is always a condensate of composite loops
(1,—2) and there will be no phase transition on this axis. , 8plog(c)

(2) Bn,=0c. The general free energy relation E(}.2) a :W)pz, (89)

shows that this limit force§1,ﬁ0. The free energy condi-
tion becomes - log(c)

2 T o 2000V

2 G(0

F(L)= %mZG(O)—Iog(C). (82) ™ BG(O)

9 Whena>1 andb<1, the ellipse is very flat along trepaxis
Sincem is forced to be zero, we only have to consider elec-2nd the condensate with th.e Iovyest free energy is (1,0).
tric (1,0) loops.F(L) of (1,0) loops becomes negative for Whena<1 andb>1, the ellipse is very flat along the
By>G(0)/8log(). This implies that there is a phase transi- axis and the condensate with the lowest free energy is (1,
tion on this axis from a smaB, phase containing very few —2). For values ofa andb such that they are comparable,

current loops to a largg, phase containing very large cur- the free energy is the lowest for the (0,1) condensate. There-
rent loops. fore, we generically expect three phase transitions on this

(3) By=0. In this limit we get the following constraint: axis. This case occurs {i7] in the four-dimensional model.

It is interesting to note that exactly the same condensation
condition appears in the three-dimensional model, the only
difference being that the four-dimensional Green’s function
gets replaced by the three-dimensional one and the entropy
This leaves only the composite loops {2) as possible factor takes a different value.

+1~
m Em

=0. (83

excitations. The free energy condition becomes Now that we have discussed the condensates in the vari-
ous regions of parameter space, we can propose the phase
F(L)=87"B,G(0)—log(c). (84  diagram of this model a#= . It is shown in Fig. 3. So far
. we have only discussed phase transitions of the electric, vor-
Thus, (1;-2) loops will condense for tex, and composite loops. We have already noted that there
are other excitations present in this model. These are the
log(c) 85) point like excitations, magnetic monopoles,charges, and
" 8m2G(0) the composite charges oh and m. The density of these

excitations changes continuously wigy, g, and 6. The
Therefore, on this axis we expect a smgjl phase in which  density of the magnetic monopoles and timecharges is
(1,—2) loops condense and a largg phase in which the given by
density of (1;-2) loops is very small.

4) B,==. The free energy condition is ~ —p? 1.\?
@) By=c 9 = exq—SWZBgG(O)mZ]ex;{%G(O) m+ Em) .
~ h
F(L)=2m2B8,m°G(0)—log(c). (86) (90)
(@ (1,0):F(L)=—log(c). This is one of the special features of the model in three
(b) (0,1):F(L)=27?B,G(0)—log(c). dimensions. As these excitations are point like, they form a
(©) (1,—2):F(L)=8m2B,G(0)—log(c). three-dimensional Coulomb gas of charged objects whose
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loop excitations. The magnetic monopoles (0,1) and spin

charges (1,0) have a large density at the top left corner of the
phase diagram which decreases as as we go away from it in
any direction.

(C) In this region the electric loops (1,0) condense
whereas vortex loops (0,1) have very low density. The mag-
netic monopoles (0,1) have a very low density and the spin
charges (1,0) have a large density at the top tight hand cor-
ner of the phase diagram.

(D) In this region the vortex loops (0,1) condense and the
electric current loops (1,0) have a very low density. The
magnetic monopoles (0,1) and spin charges (1,0) both have
a density which is not very large or very small.

We will now show that these different phases can be char-
acterized by the behavior of correlation functions which are
of the order-disorder type. Before we do this, we briefly de-

FIG. 3. Schematic phase diagraméat 7. The X axis is thegy scribe how these correlation functions are defined in each of
coupling and theY axis is theg,, coupling. the models discussed in the previous two sections. The cor-

relation functions are simple generalizations of the Wilson
density is always nonzero. The densities of the three possibleop [13]. In the model described in E¢18) we can intro-
types of pointlike excitations in this model are given by theduce an external curredf,(x) in a loopC on the lattice and

following. a monopole-antimonopole pair at pointg; and xXx,. The
(1) (0,1): magnetic monopoles monopole pair is introduced by choosihg,=1 on a string
) joining xx; andxx,. The correlation function is defined by
P eXp— ( 8Byt —) G(0). (91 '
8 Z,(m,—m,+J,,S,,—S,,+S,,(X))
Bh W(C,Xq,Xp) = 1IN " ,U-ZM Iz “ '
(2) (1,0): spin charges ! (95)
2 ~
pm= ex;{ — %G(O)). (92)  Thisis equivalent to making the following changenn(x):
h
M(*X) — M(*X) + p(*X), (96)

(3) (1,—2): composite charges

P~ exp[—64172,6’gG(0)]_ 93) wherep is defined as

. L *X) = O(*kX—*X1) — O(*X—*Xy). 9
Since each of these densities is always nonzero, we have a p(xx) =2 1)~ o 2) ©7
three-dimensional Coulomb gas containing three species ofhe correlation functionV measures the free energy of an
charged particles. The densities of these three species gkternal current lood, on C and an external monopole-
charged particles determine various correlation functiongntimonopole pair at pointsx, and *x,. We can similarly

(which are defined later grindependently, and can lead to define a correlation function for the model described in Eq.
different effects at different values in the parameter spacg34) as

The behavior of physical correlation functions will be deter-

mined by the density of electric and vortex loops as well as Zy(m—m+M(x),l ,—1,(x)+1,(x))
the density of magnetic monopoles amccharges. The vari- W(xC,X1,X2) = Z, .
ous regions in the schematic phase diagram in Fig. 3 are (99)

discussed below.

(A) In this region only the composite loops (12) con- Here,l;ﬁéo on all the links which are dual to the plaquettes
dense. At large values ¢}, , the density of magnetic mono- in a surface bounded by the loef on the dual lattice, and
poles and spin charges is large small whereas at small valué$(x) has the form

of B, they become nonzero but obey the relation
M(X)= 8(X—X1) — S(X—X5). (99

=0. (94 The correlation functiolV measures the free energy of an
external vortex loop-C and an external pair of spin charges

The density of magnetic monopoles decreasegass in-  at x; and x,. The correlation function$V and W are ex-

creased. amples of order disorder variables as they involve both the
(B) In this region the electric current loops (1,0), the vor- gauge(spin degrees of freedom and the monop6lertex

tex loops (1,0), and the composite loops{2) have almost degrees of freedom. In the interacting model we can consider

zero density. Therefore, this phase is essentially free of alhe following correlation function:
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!

!
Z(m,—m,+J,,S,,—S,,+S,, . m—=m+M,I, —I, +1 )

Wint(C,*CXq Xp, *Xq , #Xp) = A (100
|
In the presence of interactiof@hen #+0), to the gauge field. The phase structure of the model changes
as a function o#. In fact, the interactions in this model arise
W, = WW, (101  entirely because of the nonzero valueéfThis model has

an exact duality symmetry which acts on a three-parameter
where we have suppressed the arguments of the correlati@pace. This seems to be the first example of a statistical
function. This correlation function obeys the same dualitymodel in which the duality transformation acts on a three-

invariance as the partition function, coupling space. We also made a qualitative analysis of the
phase diagram using energy entropy arguments and we
Wi,i(C,*xC, x4 ,xz,*xl,*xz)ﬁg By .6 showed that at nonzero values@fthere are phases in which

excitations having composite loops condense. A special fea-
:Wint(*C,C,*Xl,*Xzyxl,xz)ﬁé,ﬁlg,af, (102 ture of the three-dimensional model is that there are novel
pointlike excitations of different species which form a three-
whereg;, B, andé’ are related to the unprimed values by dimensional Coulomb gas. Our analysis is also instructive in
the duality equations in EG66). understanding how the dual transformation works in systems
It is well known that a dilute gas of magnetic monopolescontaining both vortices and monopoles. Since the phase dia-
in three dimensions results in an area law behavior for th@ram of this model(which was studied ap=) admits
Wilson loop [3]. This effect arises from the form of the Phases with charged vortices, it will be interesting if some
monopole-current loop interaction. Also, an externalcondensed matter systems can be described by this model.
monopole-antimonopole pair will experience a screeneeinother interesting avenue is to introduéelike terms in
Coulomb potential in this gas. Since the form of the spin-Non-Abelian gauge theorig# three dimensionsand look
charge—vortex-loop interaction is the same as the monopoldor oblique phases at nonzero valuestof
current loop interaction, a dilute gas of spin charges will
result in a similar area law behavior for an external vortex APPENDIX
loop. Again, an external pair ah charges will experience a . . . .
screened Coulomb interaction in this gas. Similarly, compos- In this appendix we will examine the f°”‘? of the
ite charges (% 2) will result in an area law for an external monopole—current-loop and the .vortefn—_eharge.mterac-
composite Wilson loop that consists of a loop of electrico" The monopole—current-loop interaction is given by
charge(1) and vorticity (—2). The details of this calculation
are exactly analogous to those [iB]. However, our model > ﬁ‘(*X)G(X—X')fwx%Km(X')- (A1)
also has looplike excitations which can screen external Wil- xx'
son loops and vorticity loops which can screen external vor- , . . .
tex loops. For instance, a condensate of (1,0) loops calfx» IS @ Particular solution of
screen a Wilson loop of charge (1,0) and yield a perimeter 9. K* =pm (A2)
law. When both current loops and monopoles are present, the wpy v

Wllson IOOp.W'” h"ﬂ?"e an area 'aW. piece but .th? permeterc, sider a configuration in which the monopole is along the
law piece will dominate at large distances. Similarly, when

fzaxiss and at a distanceand there is a circular current loop
(0,1) vortex loops condense, an external vortex Io_op o( f radiusR) is in theX-Y plane, i.e., onlym,,m,#0. It is
charge (0,1) can be screened by these loops and again resy sily seen that a particular solution of E42) is

in a perimeter law for the external vortex loop inspite of the

the presence afn charges which alone would have yielded K.=—p inside C,

an area law. The same holds true for composite-@l),

loops and (1;2) charges. From the partition function in Eq. K,y=0 otherwise,

(56), we see that there is no monopole-vortex or spin-

charge—current-loop interaction. Thus these excitations can- Kye=Ky,=0. (A3)

not influence each other in any drastic way.
This reduces the monopole—current-loop interaction to

V. CONCLUSIONS

In this paper we showed that it is possible to define an _22 M(*X) 9z G(X=X")Ky(X"). (A4)
analogue of thed term in three dimensions. We presented X
our analysis of the¢ term in a lattice model which was The coordinates of andx’ are given by
motivated by the work of the authors [@,8]. The 6 term
couples magnetic monopoles to the scalar field and vortices x(0,02),
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x'(x",y",0). (A5)  The O function has the property
Using 0(z2)=1, z>0
(x—x"); ®(z)=0, z<O0. (A12)
3/G(Xx—X')= ——", (A6)
Ix—x']| The coordinates of the pointsandx’ are given by
the interaction is given by the expression x(Rcog #),Rsin(6),0),
zdx dy’ x'(0,02"). (A13)
2 mJ' 12 124 512y3/2° (A7)
s(X'“+y’“+2z'7) Again using Eq(A6) we are led to the integral
The integration is over the area of the loop. The evaluation o dz’
of this integral is straightforward and gives —2mmpR ) (R2+—z’2)3’2 (Al14)
|=2pm{2m(1-coda)l}, (A8) This integral is also straightforward to evaluate and gives the
wherea is the azimuthal subtended by the current loop at thesolid angle interaction
monopole. _ _
Now we turn to the vortexn interaction. It has the form ! 2pm{2a1= code) ]}, (A15)
which is just the negative of the monopole—current-loop in-
— 2 M(X)G(X—X') € 4,0, K5(X"). Ag)  teraction.
x,zx'r A(X)G( ) Enunduky(X') (A9) The purpose of this appendix was to show that the
.. . ) ) monopole—current-loop interaction has the same form as the
K. is the solution of the inhomogeneous equation interaction between then charge and the vortex loop apart

from a sign factor.

A note on notationln our model there are several fields:
Consider a configuration in whiain(x) #0 at a point on the ~®x(X),¢(x) are the gauge and spin variables, (x),m(x)
z axis a distancé from the origin. The solution of the inho- are the charged fieldsn(xx),m,(xx) are the topological

9,K(x)=pm(x). (A10)

mogeneous equation is chosen to be excitations(with the tildes; q')(x),ZSM(x) [which appear in
o, the solutions of the constraint, Eq25) and(39)] make their
Ky=Ky=0, appearance at intermediate stages and we hope that these are
) not confused with the other fields. Als@, as a coupling
Kz=pO(z—-L). (A11)  constant should be distinguished from the spin variaiie .
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